
3 – Databases and Logical data modelling

Data Management

Michele Mastroianni
Michele.mastroianni@unicampania.it
mmastroianni@unisa.it

Database
What is a database ?
• A collection of files storing related data
Examples of databases
• Accounts database; payroll database; University students database; Amazon’sproducts database; airline reservationdatabase

An Example: Online Bookseller
What data do we need?
• Data about books, customers, pending orders, order histories, trends, preferences, etc.
• Data about sessions (clicks, pages, searches)
What capabilities on the data do we need?
• Insert/remove books, find books by author/title/etc., analyze past order history, recommend books, …
• Data must be accessed efficiently, by many users
• Data must be safe from failures and malicious users

What a DBMS Does
• Describe real-world entities in terms of storeddata
• Persistently store large datasets
• Efficiently query & update
• Change structure (e.g., add attributes)
• Concurrency control: enable simultaneousupdates
• Security and integrity

Relational Model
• Data is a collection of relations / tables:

• mathematically, relation is a set of tuples
– each tuple appears 0 or 1 times in the table
– order of the rows is unspecified

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

columns /
attributes /
fields

rows /
tuples /
records

The Relational Data Model
• Degree of a relation = #attributes
• Each attribute has a type.

– Examples types:
• Strings: CHAR(20), VARCHAR(50), TEXT
• Numbers: INT, SMALLINT, FLOAT
• MONEY, DATETIME, …
• Few more that are vendor specific

Keys
• Key = one (or multiple) attributes that

uniquely identify a record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key

Keys
• Key = one (or multiple) attributes that

uniquely identify a record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key

Keys
• Key = one (or multiple) attributes that

uniquely identify a record

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key Is this a key?
No: future updates to the
database may create duplicate
no_employees

Multi-attributeKey

fName lName Income Department
Alice Smith 20000 Testing
Alice Thompson 50000 Testing
Bob Thompson 30000 SW
Carol Smith 50000 Testing

Key = fName,lName
(what does this mean?)

Multiple Keys

SSN fName lName Income Department
111-22-3333 Alice Smith 20000 Testing
222-33-4444 Alice Thompson 50000 Testing
333-44-5555 Bob Thompson 30000 SW
444-55-6666 Carol Smith 50000 Testing

Key Another key

We can choose one key and designate it as primary key
E.g.: primary key = SSN

Foreign Key

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

name population
USA 320M
Japan 127M

Company(cname, country, no_employees, for_profit)
Country(name, population)

Foreign key to
Country.nameCompany

Country

Keys: Summary
• Key = columns that uniquely identify tuple

– Usually we underline
– A relation can have many keys, but only one

can be chosen as primary key
• Foreign key:

– Attribute(s) whose value is a key of a record
in some other relation

– Foreign keys are sometimes called semantic
pointer

SQL
• Originally ‘Sequel’ -Structured English query Language, part of an IBM project in the 70’s
• Sequel was already taken, so it became SQL - Structured Query Language

• ANSI Standards
• SQL-86, 89, 92, 99,2003
• Current SQL:2008

• Most modern DBMS use a variety of SQL
• Few (if any) are true to the standard
• Oracle 10g SQL which we will be using is mostly compliant to SQL:2003

SQL
• SQL provides

• A data definition language (DDL)
• A data manipulation language (DML)
• A data control language (DCL)

• In addition SQL
• Can be used from other languages
• Is often extended to provide common programming constructs (such as if-then tests, loops, variables, etc.)

Notes
• SQL is (usually) not case-sensitive, but we’ll write SQL keywords in upper case for emphasis
• SQL statements will be written in BOLD COURIER FONT

• Strings in SQL are surrounded by single quotes:
'I AM A STRING'

• Single quotes within
a string are doubled:
'I''M A STRING'

• The empty string:''

Non-Procedural Programming
• SQL is a declarative (non-procedural) language

• Procedural - say exactly what the computer has to do
• Non-procedural –describe the required result (not the way to compute it)

• Example: Given adatabase with tables
• Student with attributes ID, Name, Address
• Module with attributes Code, Title
• Enrolment with attributes ID, Code

• Get a list of studentswho take the module‘Database Systems’

Non-Procedural (SQL)
SELECT Name FROM Student, Enrolment
WHERE (Student.ID = Enrolment.ID)
AND (Enrolment.Code =
(SELECT Code FROM Module WHERE

Title = ‘Database Systems’))

CREATE TABLE
CREATE TABLE
<name> (
<col-def-1>,
<col-def-2>,

:
<col-def-n>,
<constraint-1>,

:
<constraint-k>)

• You supply
• A name for the table
• A list of column definitions
• A list of constraints (such as keys)

Column Definitions

<col-name> <type>
[NULL|NOT NULL]
[DEFAULT <val>]
[constraint-1 [,
constraint-2[,
...]]]

• Each column has a name and a type
• Common types

• INT
• REAL
• CHAR(n)
• VARCHAR(n)
• DATE

Column Definitions

• Columns can be specified as NULL or NOT NULL
• NOT NULL columns cannot have missing values
• If neither is giventhen columns areassumed NULL

• Columns can be given a default value
• You just use the keyword DEFAULT followed by the value, e.g.:

num INT DEFAULT 0

Example
CREATE TABLE Student (
stuID INT NOT NULL,
stuName VARCHAR(50) NOT NULL,
stuAddress VARCHAR(50),
stuYear INT DEFAULT 1)

Student
ID

Name
Address

Year

Constraints
CONSTRAINT
<name>
<type>
<details>

• Common <type>s
• PRIMARY KEY
• UNIQUE
• FOREIGN KEY
• INDEX

• Each constraint is given a name –Access SQL requires a name, but some others don’t
• Constraints which refer to single columns can be included in their definition

Primary Keys
• Primary Keys are defined through constraints
• A PRIMARY KEY

constraint also includes a UNIQUE
constraint and makes the columns involved NOT NULL

• The <details> for a primary key is a list of columns which make up the key
CONSTRAINT <name>
PRIMARY KEY
(col1, col2, …)

Unique Constraints
• As well as a single primary key, any set of columns can be specified as UNIQUE
• This has the effect of making candidate keys in the table

• The <details> for a unique constraint are a list of columns which make up the candidate key
CONSTRAINT <name>
UNIQUE
(col1, col2, …)

Example
CREATE TABLE Student (
stuID INT NOT NULL,
stuName VARCHAR(50) NOT NULL,
stuAddress VARCHAR(50),
stuYear INT DEFAULT 1,
CONSTRAINT pkStudent
PRIMARY KEY (stuID))

Deleting Tables
• To delete a table use
• DROP TABLE
• [IF EXISTS]
• <name>
• Example:
• DROP TABLE Module

• BE CAREFUL with any SQL statement with DROP in it
• You will delete any information in the table as well
• You won’t normally be asked to confirm
• There is no easy way to undo the changes

Changing Tables
• Sometimes you want to change the structure of an existing table

• One way is to DROP it then rebuild it
• This is dangerous, so there is the ALTER TABLE command instead

• ALTER TABLE can
• Add a new column
• Remove an existing column
• Add a new constraint
• Remove an existing constraint

ALTERing Columns
To add or remove columns use
ALTER TABLE <table>
ADD COLUMN <col>
ALTER TABLE <table>
DROP COLUMN <name>

Examples
ALTER TABLE Student
ADD COLUMN
Degree VARCHAR(50)

ALTER TABLE Student
DROP COLUMN Degree

ALTERing Constraints
To add or remove columns use
ALTER TABLE <table>

ADD CONSTRAINT
<definition>

ALTER TABLE <table>
DROP CONSTRAINT

<name>

Examples
ALTER TABLE Module
ADD CONSTRAINT
ck UNIQUE (title)

ALTER TABLE Module
DROP CONSTRAINT ck

INSERT, UPDATE, DELETE
• INSERT - add a row

to a table
• UPDATE - change

row(s) in a table
• DELETE - remove

row(s) from a table

• UPDATE and DELETE use ‘WHERE clauses’ to specify which rows to change or remove
• BE CAREFUL with these - an incorrect WHERE clause can

destroy lots of data

INSERT
INSERT INTO

<table>
(col1, col2, …)
VALUES
(val1, val2, …)

• The number of columns and values must be the same
• If you are adding a value to every column, you don’t have to list them
• SQL doesn’t require that all rows are different (unless a constraint says so)

INSERT

Student
ID Name Year
1 John 1

Student
ID Name Year
1 John 1
2 Mary

ID Name Year
1 John 1
2 Mary 3

Student
INSERT INTO Student
(ID, Name, Year)
VALUES (2, ‘Mary’, 3)

ID Name Year
1 John 1
2 Mary 3

INSERT INTO Student
(Name, ID)
VALUES (‘Mary’, 2)

Student
INSERT INTO Student
VALUES (2, ‘Mary’, 3)

UPDATE
UPDATE <table>
SET col1 = val1

[,col2 = val2…]
[WHERE
<condition>]

• All rows where the condition is true have the columns set to the given values
• If no condition is given all rows are changed so BE CAREFUL
• Values are constants or can be computed from columns

UPDATE
Student
ID Name Year
1 John 1
2 Mark 3
3 Anne 2
4 Mary 2 ID Name Year

1 John 2
2 Mark 4
3 Anne 3
4 Mary 3

Student

UPDATE Student
SET Year = Year + 1

UPDATE Student
SET Year = 1,

Name = ‘Jane’
WHERE ID = 4

Student
ID Name Year
1 John 1
2 Mark 3
3 Anne 2
4 Jane 1

DELETE
• Removes all rows which satisfy the condition
DELETE FROM
<table>
[WHERE
<condition>]

• If no condition is given then ALL rows are deleted - BE CAREFUL
• Some versions of SQL also have TRUNCATE

TABLE <T> which is like DELETE FROM <T>
but it is quicker as it doesn’t record its actions

DELETE
Student
ID Name Year
1 John 1
2 Mark 3
3 Anne 2
4 Mary 2 Student

ID Name YearDELETE FROM Student
orTRUNCATE TABLE Student

DELETE FROM
Student
WHERE Year = 2

Student
ID Name Year
1 John 1
2 Mark 3

SELECT• The SQLcommand you will use most often
• Queries a set of tablesand returns results as atable
• Lots of options, we will look at many of them
• Usually more thanone way to do anygiven query

• SQL’s SELECT is different from the relational algebra’s selection 
• We’ll see translation of SQL queries into relational algebra later

SQL SELECT Overview
SELECT
[DISTINCT | ALL] <column-list>
FROM <table-names>
[WHERE <condition>]
[ORDER BY <column-list>]
[GROUP BY <column-list>]
[HAVING <condition>]

• ([]- optional, | - or)

Simple SELECT
SELECT <columns>

FROM <table>
<columns> can be

• A single column
• A comma-separated list of columns
• * for ‘all columns’

• Given a tableStudent withcolumns
• stuID
• stuName
• stuAddress
• stuYear

Sample SELECTs
SELECT * FROM Student

stuID stuName stuAddress stuYear
1 Anderson 15 High St 1
2 Brooks 27 Queen’s Rd 3
3 Chen Lenton Hall 1
4 D’Angelo Derby Hall 1
5 Evans Lenton Hall 2
6 Franklin 13 Elm St 3
7 Gandhi Lenton Hall 1
8 Harrison Derby Hall 1

Sample SELECTs
SELECT stuName FROM Student

stuName
Anderson
Brooks
Chen
D’Angelo
Evans
Franklin
Gandhi
Harrison

Sample SELECTs
SELECT stuName, stuAddress
FROM Student

stuName stuAddress
Anderson 15 High St
Brooks 27 Queen’s Rd
Chen Lenton Hall
D’Angelo Derby Hall
Evans Lenton Hall
Franklin 13 Elm St
Gandhi Lenton Hall
Harrison Derby Hall

References
1. Elmasri , R., Navathe, S.B., Fundamentals of Database Systems, 7th Edition, Pearson Ed., 2016, ISBN: 978-

0133970777
Italian readers could prefer
1. Atzeni, P., Ceri, S., Paraboschi, S., & Torlone, R. (2006). Basi di dati: modelli e linguaggi di interrogazione

(seconda edizione). McGraw-Hill.

