3 — Databases and
Logical data modelling

Data Management

Michele Mastroianni
Michele.mastroianni@unicampania. it
mmastroianni@unisa. it

Database

What is a database ?

* A collection of files storing related data
Examples of databases

* Accounts database; payroll database;
University students database; Amazon’s

products database; airline reservation
database

An Example: Online Bookseller

What data do we need?

* Data about books, customers, pending orders, order
histories, trends, preferences, etc.

e Data about sessions (clicks, pages, searches)
What capabilities on the data do we need?

* |Insert/remove books, find books by author/title/etc.,
analyze past order history, recommend books, ...

e Data must be accessed efficiently, by many users

e Data must be safe from failures and malicious users

What a DBMS Does

Describe real-world entities in terms of stored
data

Persistently store large datasets
Efficiently query & update
Change structure (e.g., add attributes)

Concurrency control: enable simultaneous
updates

Security and integrity

Real-world view 1 Real-world view ...n

DESIGN PHASE

IMPLEMENTATION
PHASE

Conceptual data
modeling

h 4

Logical data modeling

l

Physical modeling

Universita
degli Studi
della Campania
L ioi Vonwitelli

The real - world modeled
relative to user - oriented
perspective

All datasets required for the
application are identified
(entities, properties and
relationships, constraints)

Translation of entities,
properties and relationships
to suit data structure (e.g.
relational, object-oriented)

Apportioning of datasets to
computer storage units
(e.g. bytes)

Relational Model columns/

attributes /

fields
« Data is a collection of relations / tables:

chame country no_employees for_profit

GizmoWorks | USA 20000 True
rows /

Canon Japan 50000 True
tuples / —

Hitachi Japan 30000 True
records

HappyCam Canada 500 False

« mathematically, relation is a set of tuples

— each tuple appears 0 or 1 times in the table
— order of the rows is unspecified

The Relational Data Model

* Degree of a relation = #attributes

« Each attribute has a type.

— Examples types:
 Strings: CHAR(20), VARCHAR(50), TEXT
 Numbers: INT, SMALLINT, FLOAT
« MONEY, DATETIME, ...
* Few more that are vendor specific

Keys

» Key = one (or multiple) attributes that
uniquely identify a record

chame country no_employees for_profit
GizmoWorks | USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Keys

» Key = one (or multiple) attributes that
uniquely identify a record

chame country no_employees for_profit
GizmoWorks | USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Keys

» Key = one (or multiple) attributes that
uniquely identify a record

No: future updates to the
database may create duplicate
no_employees

chame country no_employees for_profit
GizmoWorks | USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Multi-attribute
Key

Key = fName,IName
(what does this mean?)

4 A A
fName IName Income Department
Alice Smith 20000 Testing
Alice Thompson | 50000 Testing
Bob Thompson | 30000 SW
Carol Smith 50000 Testing

Multiple Keys

4 A N A A\

SSN fName IName Income Department
111-22-3333 Alice Smith 20000 Testing
222-33-4444 | Alice Thompson | 50000 Testing
333-44-5555 | Bob Thompson | 30000 SW
444-55-6666 | Carol Smith 50000 Testing

We can choose one key and designate it as primary key
E.g.: primary key = SSN

Foreign Key

Company(cname, country, no_employees, for profit)

Country(name, population)

Foreign key to
Country.name

Company

chame country - no_employees | for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y
Country

name population

USA 320M

Japan 127TM

Keys: Summary

« Key = columns that uniquely identify tuple

— Usually we underline
— A relation can have many keys, but only one
can be chosen as primary key
* Foreign key:
— Attribute(s) whose value is a key of a record
In some other relation

— Foreign keys are sometimes called semantic
pointer

SQL

e Originally ‘Sequel’ - e ANSI Standards

Structured English e SQL-86, 89, 92, 99,
query Language, 2003
part of an IBM e Current SQL:2008
project in the 70’s e Most modern DBMS
e Sequel was already use a variety of SQL
taken, so it became e Few (if any) are true
SQL - Structured to the standard
Query Language e Oracle 10g SQL which

we will be using is
mostly compliant to
SQL:2003

SQL

e SQL provides e In addition SQL

e A data definition e Can be used from
language (DDL) other languages

e A data manipulation Is often extended to
language (DML) provide common
e A data control programming
language (DCL) constructs (such as if-
then tests, loops,
variables, etc.)

Notes

e SQL is (usually) not e Strings in SQL are
case-sensitive, but surrounded by single
we'll write SQL quotes:
keywords in upper 'I AM A STRING'

case for emphasis e Single quotes within

SQL statements will a string are doubled:
be written in BOLD 'I''M A STRING'

Non-Procedural Programming

SQL is a declarative e Example: Given a

(non-procedural) database with tables
language e Student with
e Procedural - say attributes ID, Name,
exactly what the Address
computer has to do e Module with attributes
e Non-procedural - Code, Title
describe the required e Enrolment with
result (not the way to attributes ID, Code
compute it) e Get a list of students

who take the module
‘Database Systems’

Non-Procedural (SQL)

SELECT Name FROM Student, Enrolment
WHERE (Student.ID = Enrolment.ID)

AND (Enrolment.Code =
(SELECT Code FROM Module WHERE

Title = ‘Database Systems’))

CREATE TABLE

CREATE TABLE e You supply

<name> (e A name for the table

<col-def-1>, e A list of column
<col-def-2>, definitions

e A list of constraints

<col-def-n>, (such as keys)
<constraint-1>,

<constraint-k>)

Column Definitions

e Each column has a

<col-name> <type> name and a type
[NULL | NOT NULL] e Common types
[DEFAULT <val>] © INT
 REAL
[constraint-1 [,
e CHAR(n)
constraint-27[, . VARCHAR (n)

...111 + DATE

Column Definitions

e Columns can be e Columns can be
specified as NULL or given a default value
NOT NULL e You just use the

« NOT NULL columns keyword DEFAULT
cannot have missing followed by the
values value, e.q.:

e If neither is given
then columns are
assumed NULL

num INT DEFAULT O

Example

CREATE TABLE Student (
stuID INT NOT NULL,
stuName VARCHAR(50) NOT NULL,
stuAddress VARCHAR(50),
stuYear INT DEFAULT 1)

(10> @ddress

Student

Qamg Cyear >

Constraints

CONSTRAINT e Each constraint is
<name> given a hame -
<type> Access SQL requires

a hame, but some

others don't

Constraints which
refer to single
columns can be
included in their
definition

<details>

Common <type>S
 PRIMARY KEY

« UNIQUE

e FOREIGN KEY

e INDEX

Primary Keys

e Primary Keys are e The <details> for a
defined through primary key is a list
constraints of columns which

e A PRIMARY KEY make up the key
constraint also
includes a UNIQUE CONSTRAINT <name>
constraint and PRIMARY KEY

makes the columns

involved NOT NULL (coll, colz, .)

Unigue Constraints

e As well as a single e The <details> for a
primary key, any set unique constraint are
of columns can be a list of columns
specified as UNIQUE which make up the

e This has the effect of candidate key

making candidate
keys in the table CONSTRAINT <name>

UNIQUE
(coll, col2, .)

Example

CREATE TABLE Student (
stuID INT NOT NULL,
stuName VARCHAR(50) NOT NULL,
stuAddress VARCHAR(50),
stuYear INT DEFAULT 1,
CONSTRAINT pkStudent
PRIMARY KEY (stulID))

Deleting Tables

To delete a table use ¢ BE CAREFUL with

any SQL statement

DROP TABLE with DROP in it
[IF EXISTS] e You will delete any

<name> information in the
table as well

Example: e You won’t normally be
asked to confirm

to undo the changes

Changing Tables

e Sometimes you want e ALTER TABLE can
to change the e Add a new column
structure of an e Remove an existing
existing table column

e One way is to DROP it Add a new constraint
then rebuild it Remove an existing

e This is dangerous, so constraint
there is the ALTER
TABLE command
instead

ALTERiIing Columns

To add or remove
columns use

ALTER TABLE <table>
ADD COLUMN <col>

ALTER TABLE <table>
DROP COLUMN <name>

Examples

ALTER TABLE Student
ADD COLUMN
Degree VARCHAR (50)

ALTER TABLE Student
DROP COLUMN Degree

ALTERIng Constraints

To add or remove
columns use

ALTER TABLE <table>
ADD CONSTRAINT

<definition>

ALTER TABLE <table>
DROP CONSTRAINT

<name>

Examples

ALTER TABLE Module
ADD CONSTRAINT

ck UNIQUE (title)

ALTER TABLE Module
DROP CONSTRAINT ck

INSERT, UPDATE, DELETE

« INSERT - add a row « UPDATE and DELETE

to a table use ‘WHERE clauses’
to specify which
. UPDATE - change rows to change or

remove

e BE CAREFUL with

these - an incorrect
WHERE clause can

destroy lots of data

row(s) in a table

e DELETE - remove
row(s) from a table

INSERT

INSERT INTO e The number of

columns and values
<table> must be the same

(coll, col2, .. If you are adding a

VALUES value to every
column, you don't
(vall, valz, have to list them
SQL doesn’t require
that all rows are
different (unless a
constraint says so)

INSERT

Student

INSERT INTO Student ID | Name
(ID, Name, Year) 1 | John
VALUES (2, ‘Mary’, 3) 2

Mary
dent

Student
ID | Name

INSERT INTO Student ID | Name
— (Name, ID) 1 | John
1 | John VALUES (‘Mary’, 2) 5

Mary
Student

INSERT INTO Student ID | Name
VALUES (2, ‘Mary’, 3) —1 1 | yohn

2 | Mary

UPDATE

e All rows where the

UPDATE <table> condition is true have
the columns set to the

SET coll = wvall given values

[,co0l2 = val2..] If no condition is
given all rows are
[WHERE changed so BE
<condition>] CAREFUL

Values are constants
or can be computed
from columns

Student

Name

John
Mark
Anne
Mary

UPDATE

Student

ID

Name

UPDATE Student

SET Year 1, __—

Name ‘Jane’
WHERE ID 4

John
Mark
Anne
Jane

Student

Name

UPDATE Student
SET Year = Year + 1 —

John
Mark
Anne
Mary

DELETE

e Removes all rows e If no condition is

which satisfy the given then ALL rows
condition are deleted - BE

CAREFUL

Some versions of SQL
DELETE FROM also have TRUNCATE
<table> TABLE <T> Which is
like DELETE FROM <T>
[WHERE but it is quicker as it
doesn’t record its

<condition>] S

DELETE

Student

DELETE FROM ID | Name
Student 1 John

Student WHERE Year = 2 2 | Mark
Name

John
Mark
Anne
Mary

DELETE FROM Student

or
TRUNCATE TABLE Student

. The sQL SELECT

mman
command you e SQL's SELECT is

will use most different from the
often relational algebra’s
selection

« Queries a set of tables

and returns results as a o We'll see tra_nSI‘?‘tion
table of SQL queries into

- Lots of options, we relational algebra
will look at many of later

them

« Usually more than
one way to do any
given query

SQL SELECT Overview

SELECT
[DISTINCT | ALL] <column-list>
FROM <table-names>
[WHERE <condition>]
[ORDER BY <column-list>]
[GROUP BY <column-list>]
[HAVING <condition>]

« ([]- optional, | - or)

Simple SELECT

SELECT <columns> e Given a table

FROM <table> Student with

columns
<columns> can be e stulD
e stuName

A single column
* ‘N9 . e stuAddress

e A comma-separated
: e stuYear
list of columns

« * for ‘all columns’

Sample SELECTs

SELECT * FROM Student

stuID|stuName |stuAddress stuYear
1 Anderson (15 High St 1
2 Brooks 27 Queen’s Rd|3
3 Chen Lenton Hall |1
4 D’ Angelo Perby Hall 1
5 Evans Lenton Hall [2
16 Franklin (13 Elm St 3
7 Gandhi Lenton Hall |[1
18 Harrison Derby Hall 1

Sample SELECTs

SELECT stuName FROM Student

stuName
Anderson
Prooks
hhen

D’ Angelo
hvans
[Franklin
lGandhi
harrison

Sample SELECTs

SELECT stuName, stuAddress
FROM Student

stuName |stuAddress
Anderson (15 High St
brooks 27 Queen’s Rd

hhen Lenton Hall
b’Angelo Derby Hall
[Evans Lenton Hall

Franklin 13 Elm St
IGandhi [Lenton Hall
harrison Derby Hall

References

1. Elmasri, R., Navathe, S.B., Fundamentals of Database Systems, 7th Edition, Pearson Ed., 2016, ISBN: 978-
0133970777

Italian readers could prefer

1. Atzeni, P, Ceri, S., Paraboschi, S., & Torlone, R. (2006). Basi di dati: modelli e linguaggi di interrogazione

(seconda edizione). McGraw-Hill.

Universita
degli Studi
della Campania
L ioi Vorwitelli

